Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
The most devastating disease affecting the global citrus industry is Huanglongbing (HLB), caused by the pathogen Candidatus Liberibacter asiaticus. HLB is primarily spread by the insect vector Diaphorina citri (Asian Citrus Psyllid). To counteract the rapid spread of HLB by D. citri, traditional vector control strategies such as insecticide sprays, the release of natural predators, and mass introductions of natural parasitoids are used. However, these methods alone have not managed to contain the spread of disease. To further expand the available tools for D. citri control through generating specific modifications of the D. citri genome, we have developed protocols for CRISPR-Cas9-based genetic modification. Until now, genome editing in D. citri has been challenging due to the general fragility and size of D. citri eggs. Here we present optimized methods for collecting and preparing eggs to introduce the Cas9 ribonucleoprotein (RNP) into early embryos and alternative methods of injecting RNP into the hemocoel of adult females for ovarian transduction. Using these methods, we have generated visible somatic mutations, indicating their suitability for gene editing in D. citri. These methods represent the first steps toward advancing D. citri research in preparation for future genetic-based systems for controlling HLB.more » « less
-
Space weather, including solar storms, can impact Earth by disturbing the geomagnetic field. Despite the known dependence of birds and other animals on geomagnetic cues for successful seasonal migrations, the potential effects of space weather on organisms that use Earth’s magnetic field for navigation have received little study. We tested whether space weather geomagnetic disturbances are associated with disruptions to bird migration at a macroecological scale. We leveraged long-term radar data to characterize the nightly migration dynamics of the nocturnally migrating North American avifauna over 22 y. We then used concurrent magnetometer data to develop a local magnetic disturbance index associated with each radar station (ΔBmax), facilitating spatiotemporally explicit analyses of the relationship between migration and geomagnetic disturbance. After controlling for effects of atmospheric weather and spatiotemporal patterns, we found a 9 to 17% decrease in migration intensity in both spring and fall during severe space weather events. During fall migration, we also found evidence for decreases in effort flying against the wind, which may represent a depression of active navigation such that birds drift more with the wind during geomagnetic disturbances. Effort flying against the wind in the fall was most reduced under both overcast conditions and high geomagnetic disturbance, suggesting that a combination of obscured celestial cues and magnetic disturbance may disrupt navigation. Collectively, our results provide evidence for community-wide avifaunal responses to geomagnetic disturbances driven by space weather during nocturnal migration.more » « less
-
Abstract Mixotrophs, organisms that combine photosynthesis and heterotrophy to gain energy, play an important role in global biogeochemical cycles. Metabolic theory predicts that mixotrophs will become more heterotrophic with rising temperatures, potentially creating a positive feedback loop that accelerates carbon dioxide accumulation in the atmosphere. Studies testing this theory have focused on phenotypically plastic (short‐term, non‐evolutionary) thermal responses of mixotrophs. However, as small organisms with short generation times and large population sizes, mixotrophs may rapidly evolve in response to climate change. Here, we present data from a 3‐year experiment quantifying the evolutionary response of two mixotrophic nanoflagellates to temperature. We found evidence for adaptive evolution (increased growth rates in evolved relative to acclimated lineages) in the obligately phototrophic strain, but not in the facultative phototroph. All lineages showed trends of increased carbon use efficiency, flattening of thermal reaction norms, and a return to homeostatic gene expression. Generally, mixotrophs evolved reduced photosynthesis and higher grazing with increased temperatures, suggesting that evolution may act to exacerbate mixotrophs' effects on global carbon cycling.more » « less
-
Abstract Observations of 30‐MHz coherent backscatter from sporadic‐Eionization layers were obtained with a VHF imaging radar located in Ithaca, New York. The volume probed by the radar lies at relatively high magnetic latitudes, on the northern edge of the mid‐latitude region and underneath the ionospheric trough. Banded, quasi‐periodic (QP) echoes observed from Ithaca are similar to those found in lower midlatitude regions. The Doppler shifts observed are smaller and, so far, do not appear to reach the threshold for Farley‐Buneman instability. However, many of the echoes exhibit fine‐scale structure, with secondary bands or braids oriented obliquely to the primary bands. Secondary bands have been seen only rarely at lower middle latitudes. In previous observations, the QP scattering has been linked to unstable neutral wind shears. Neutral wind shear commonly found in the lower thermosphere could play a key role in the formation of these irregularities and explain some morphological features of the resulting plasma density irregularities and the radar echoes. We consider whether neutral instability and turbulence in the lower thermosphere is the likely cause for some of the structuring in the sporadic‐Elayers. Results of 3D numerical simulations of atmospheric dynamics in the mesosphere to lower thermosphere support the proposition. In particular, we focus on Ekman‐type instabilities that, like the more common Kelvin‐Helmholtz instabilities, are inflection point instabilities, although specifically associated with turning shears, and result in convective rolls aligned close to the mean wind direction, with smaller‐scale secondary waves aligned normal to the primary structures.more » « less
-
Abstract Mixotrophic protists combine photosynthesis and phagotrophy to obtain energy and nutrients. Because mixotrophs can act as either primary producers or consumers, they have a complex role in marine food webs and biogeochemical cycles. Many mixotrophs are also phenotypically plastic and can adjust their metabolic investments in response to resource availability. Thus, a single species's ecological role may vary with environmental conditions. Here, we quantified how light and food availability impacted the growth rates, energy acquisition rates, and metabolic investment strategies of eight strains of the mixotrophic chrysophyte,Ochromonas. All eightOchromonasstrains photoacclimated by decreasing chlorophyll content as light intensity increased. Some strains were obligate phototrophs that required light for growth, while other strains showed stronger metabolic responses to prey availability. When prey availability was high, all eight strains exhibited accelerated growth rates and decreased their investments in both photosynthesis and phagotrophy. Photosynthesis and phagotrophy generally produced additive benefits: In low‐prey environments,Ochromonasgrowth rates increased to maximum, light‐saturated rates with increasing light but increased further with the addition of abundant bacterial prey. The additive benefits observed between photosynthesis and phagotrophy inOchromonassuggest that the two metabolic modes provide nonsubstitutable resources, which may explain why a tradeoff between phagotrophic and phototrophic investments emerged in some but not all strains.more » « less
An official website of the United States government
